An improved approach for measuring immersion freezing in large droplets over a wide temperature range
نویسنده
چکیده
Immersion freezing (ice nucleation by particles immersed in supercooled water) is a key process for forming ice in mixed-phase clouds. Immersion freezing experiments with particles in microliter-sized (millimeter-sized) water droplets are often applied to detecting very small numbers of ice nucleating particles (INPs). However, the application of such large droplets remains confined to the detection of INPs active at temperatures much higher than the homogeneous freezing limit, because of artifacts related to freezing of water droplets without added INPs at temperatures of -25 °C or higher on a supporting substrate. Here I report a method for measuring immersion freezing in super-microliter-sized droplets over a wide temperature range. To reduce possible artifacts, droplets are pipetted onto a thin layer of Vaseline and cooled in a clean booth. In the Cryogenic Refrigerator Applied to Freezing Test (CRAFT) system, freezing of pure (Milli-Q) water droplets are limited at temperatures above -30 °C. An intercomparison of various techniques for immersion freezing experiments with reference particles (Snomax and illite NX) demonstrates that despite the use of relatively large droplets, the CRAFT setup allows for evaluating the immersion freezing activity of the particles over almost the entire temperature range (about -30 °C to 0 °C) relevant for mixed-phase cloud formation.
منابع مشابه
A new electrodynamic balance (EDB) design for low-temperature studies: application to immersion freezing of pollen extract bioaerosols
In this paper we describe a newly designed cold electrodynamic balance (CEDB) system, built to study the evaporation kinetics and freezing properties of supercooled water droplets. The temperature of the CEDB chamber at the location of the levitated water droplet can be controlled in the range −40 to +40 C, which is achieved using a combination of liquid nitrogen cooling and heating by positive...
متن کاملHeterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions
The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of SnomaxTM were investigated in the temperature range between −5 and −15C. Water suspensions of these bacteria were directly sprayed into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of −5.7C. At this temperature, ab...
متن کاملHeterogeneous freezing of water droplets containing kaolinite particles
Clouds composed of both ice particles and supercooled liquid water droplets exist at temperatures above ∼236 K. These mixed phase clouds, which strongly impact climate, are very sensitive to the presence of solid particles that can catalyse freezing. In this paper we describe experiments to determine the conditions at which the clay mineral kaolinite nucleates ice when immersed within water dro...
متن کاملHigh-resolution ice nucleation spectra of sea-ice bacteria: implications for cloud formation and life in frozen environments
Even though studies of Arctic ice forming particles suggest that a bacterial or viral source derived from open leads could be important for ice formation in Arctic clouds (Bigg and Leck, 2001), the ice nucleation potential of most polar marine psychrophiles or viruses has not been examined under conditions more closely resembling those in the atmosphere. In this paper, we examined the ice nucle...
متن کاملA water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.
Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics...
متن کامل